Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 71: 101704, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907509

RESUMO

OBJECTIVE: Skeletal muscle regeneration is markedly impaired during aging. How adult muscle stem cells contribute to this decrease in regenerative capacity is incompletely understood. We investigated mechanisms of age-related changes in myogenic progenitor cells using the tissue-specific microRNA 501. METHODS: Young and old C57Bl/6 mice were used (3 months or 24 months of age, respectively) with or without global or tissue-specific genetic deletion of miR-501. Muscle regeneration was induced using intramuscular cardiotoxin injection or treadmill exercise and analysed using single cell and bulk RNA sequencing, qRT-PCR and immunofluorescence. Muscle fiber damage was assessed with Evan`s blue dye (EBD). In vitro analysis was performed in primary muscle cells obtained from mice and humans. RESULTS: Single cell sequencing revealed myogenic progenitor cells in miR-501 knockout mice at day 6 after muscle injury that are characterized by high levels of myogenin and CD74. In control mice these cells were less in number and already downregulated after day 3 of muscle injury. Muscle from knockout mice had reduced myofiber size and reduced myofiber resilience to injury and exercise. miR-501 elicits this effect by regulating sarcomeric gene expression through its target gene estrogen-related receptor gamma (Esrrg). Importantly, in aged skeletal muscle where miR-501 was significantly downregulated and its target Esrrg significantly upregulated, the number of myog+/CD74+ cells during regeneration was upregulated to similar levels as observed in 501 knockout mice. Moreover, myog+/CD74+-aged skeletal muscle exhibited a similar decrease in the size of newly formed myofibers and increased number of necrotic myofibers after injury as observed in mice lacking miR-501. CONCLUSIONS: miR-501 and Esrrg are regulated in muscle with decreased regenerative capacity and loss of miR-501 is permissive to the appearance of CD74+ myogenic progenitors. Our data uncover a novel link between the metabolic transcription factor Esrrg and sarcomere formation and demonstrate that stem cell heterogeneity in skeletal muscle during aging is under miRNA control. Targeting Esrrg or myog+/CD74+ progenitor cells might improve fiber size and myofiber resilience to exercise in aged skeletal muscle.


Assuntos
MicroRNAs , Regeneração , Adulto , Idoso , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Miogenina/genética , Miogenina/metabolismo , Miogenina/farmacologia , Regeneração/genética , Células-Tronco/metabolismo
2.
J Clin Endocrinol Metab ; 108(8): 2052-2064, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36702759

RESUMO

CONTEXT: Type 2 diabetes mellitus (T2D) negatively affects muscle mass and function throughout life. Whether adult muscle stem cells contribute to the decrease in muscle health is not clear and insights into the stem cell niche are difficult to obtain. OBJECTIVE: To establish the upstream signaling pathway of microRNA (miR)-501, a marker of activated myogenic progenitor cells, and interrogate this pathway in muscle biopsies from patients with T2D. METHODS: Analysis of primary muscle cell cultures from mice and 4 normoglycemic humans and muscle biopsies from 7 patients with T2D and 7 normoglycemic controls using gene expression, information on histone methylation, peptide screening, and promoter assays. RESULTS: miR-501 shares the promoter of its host gene, isoform 2 of chloride voltage-gated channel 5 (CLCN5-2), and miR-501 expression increases during muscle cell differentiation. We identify platelet-derived growth factor (PDGF) as an upstream regulator of CLCN5-2 and miR-501 via Janus kinase/signal transducer and activator of transcription. Skeletal muscle biopsies from patients with T2D revealed upregulation of PDGF (1.62-fold, P = .002), CLCN5-2 (2.85-fold, P = .03), and miR-501 (1.73-fold, P = .02) compared with normoglycemic controls. In addition, we observed a positive correlation of PDGF and miR-501 in human skeletal muscle (r = 0.542, P = .045, n = 14). CONCLUSIONS: We conclude that paracrine signaling in the adult muscle stem cells niche is activated in T2D. Expression analysis of the PDGF-miR-501 signaling pathway could represent a powerful tool to classify patients in clinical trials that aim to improve muscle health and glucose homeostasis in patients with diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Fator de Crescimento Derivado de Plaquetas , Adulto , Animais , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Nicho de Células-Tronco
3.
J Mol Med (Berl) ; 100(11): 1647-1658, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36178526

RESUMO

Skeletal muscle exerts many beneficial effects on the human body including the contraction-dependent secretion of peptides termed myokines. We have recently connected the myokine secreted protein acidic and rich in cysteine (SPARC) to the formation of intramuscular adipose tissue (IMAT) in skeletal muscle from aged mice and humans. Here, we searched for inducers of SPARC in order to uncover novel treatment approaches for IMAT. Endurance exercise in mice as well as forskolin treatment in vitro only modestly activated SPARC levels. However, through pharmacological treatments in vitro, we identified IGF-I as a potent inducer of SPARC expression in muscle cells, likely through a direct activation of its promoter via phosphatidylinositol 4,5-bisphospate 3-kinase (PI3K)-dependent signaling. We employed two different mouse models of growth hormone (GH)/IGF-I deficiency to solidify our understanding of the relationship between IGF-I and SPARC in vivo. GH administration robustly increased intramuscular SPARC levels (3.5-fold) in GH releasing hormone receptor-deficient mice and restored low intramuscular SPARC expression in skeletal muscle from aged mice. Intramuscular glycerol injections induced higher levels of adipocyte markers (adiponectin, perilipin) in aged compared to young mice, which was not prevented by GH treatment. Our study provides a roadmap for the study of myokine regulation during aging and demonstrates that the GH/IGF-I axis is critical for SPARC expression in skeletal muscle. Although GH treatment did not prevent IMAT formation in the glycerol model, targeting SPARC by exercise or by activation of IGF-I signaling might offer a novel therapeutic strategy against IMAT formation during aging. KEY MESSAGES : IGF-I regulates the myokine SPARC in muscle cells directly at the promoter level. GH/IGF-I is able to restore the decreased SPARC levels in aged skeletal muscle. The glycerol model induces higher adipocyte markers in aged compared to young muscle. GH treatment does not prevent IMAT formation in the glycerol model.


Assuntos
Fator de Crescimento Insulin-Like I , Músculo Esquelético , Osteonectina , Animais , Camundongos , Adiponectina/metabolismo , Colforsina/metabolismo , Cisteína , Glicerol/metabolismo , Hormônio do Crescimento/metabolismo , Músculo Esquelético/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Perilipinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Condicionamento Físico Animal
4.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493647

RESUMO

Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus-mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2-dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.


Assuntos
Adipogenia , Tecido Adiposo/patologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , MicroRNAs/genética , Músculo Esquelético/patologia , Osteonectina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tecido Adiposo/metabolismo , Idoso , Diferenciação Celular , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Músculo Esquelético/metabolismo , Osteonectina/genética , Proteínas Proto-Oncogênicas c-fos/genética , Transdução de Sinais
5.
Front Cell Dev Biol ; 7: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949479

RESUMO

Autophagy is an intracellular degradation pathway for malfunctioning aggregation-prone proteins, damaged organelles, unwanted macromolecules and invading pathogens. This process is essential for maintaining cellular and tissue homeostasis that contribute to organismal survival. Autophagy dysfunction has been implicated in the pathogenesis of diverse human diseases, and therefore, therapeutic exploitation of autophagy is of potential biomedical relevance. A number of chemical screening approaches have been established for the drug discovery of autophagy modulators based on the perturbations of autophagy reporters or the clearance of autophagy substrates. These readouts can be detected by fluorescence and high-content microscopy, flow cytometry, microplate reader and immunoblotting, and the assays have evolved to enable high-throughput screening and measurement of autophagic flux. Several pharmacological modulators of autophagy have been identified that act either via the classical mechanistic target of rapamycin (mTOR) pathway or independently of mTOR. Many of these autophagy modulators have been demonstrated to exert beneficial effects in transgenic models of neurodegenerative disorders, cancer, infectious diseases, liver diseases, myopathies as well as in lifespan extension. This review describes the commonly used chemical screening approaches in mammalian cells and the key autophagy modulators identified through these methods, and highlights the therapeutic benefits of these compounds in specific disease contexts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...